探索发现

物理学家勾勒出一个雄心勃勃的计划,用全息图来模拟黑洞

微信扫一扫,分享到朋友圈

物理学家勾勒出一个雄心勃勃的计划,用全息图来模拟黑洞
收藏 0 0

Black holes are some of the most powerful and fascinating phenomena in our Universe, but due to their tendency to swallow up anything nearby, getting up close to them for some detailed analysis isn’t possible right now.

黑洞是我们宇宙中最强大和最迷人的现象之一,但由于它们有吞没附近任何东西的倾向,现在还不可能靠近它们进行详细的分析。

Instead, scientists have put forward a proposal for how we might be able to model these massive, complex objects in the lab – using holograms.

相反,科学家们提出了一个建议,即我们如何在实验室中利用全息图来模拟这些巨大而复杂的物体。

While experiments haven’t yet been carried out, the researchers have put forward a theoretical framework for a black hole hologram that would allow us to test some of the more mysterious and elusive properties of black holes – specifically what happens to the laws of physics beyond its event horizon.

虽然实验还没有进行,研究人员已经提出了黑洞全息图的理论框架,这将使我们能够测试黑洞的一些更神秘和更难以捉摸的特性——特别是在它的视界之外的物理定律发生了什么。

物理学家勾勒出一个雄心勃勃的计划,用全息图来模拟黑洞

One of the ultimate goals would be to help us reconcile the two theories of general relativity (large-scale physics) and quantum mechanics (small-scale physics), which are both fundamentally important to science and yet aren’t in full agreement about how the Universe works.

最终目标之一将是帮助我们调和广义相对论(大尺度物理学)和量子力学(小尺度物理学)这两种理论,这两种理论对科学都具有根本性的重要意义,但它们对宇宙如何运行还没有完全达成一致。

A standout issue is the fact quantum mechanics can’t explain gravity – but both gravity and quantum mechanics are needed to explain black holes. Specifically, black holes emit a strong gravitational pull. But to explain exactly what happens beyond the event horizon, scientists need to use some very strange quantum physics.

一个突出的问题是量子力学不能解释引力,但是引力和量子力学都需要解释黑洞。具体来说,黑洞释放出强大的引力。但是为了准确解释在视界之外发生的事情,科学家需要使用一些非常奇怪的量子物理学。

It’s for this reason, physicists are eagerly searching for ways to merge the two in a potential ‘theory of everything’ referred to as quantum gravity.

正因如此,物理学家们正急切地寻找将这两种理论融合到一个潜在的“万物理论”(theory of everything)中去的方法,这个理论被称为量子引力(quantum gravity)。

“The holographic image of a simulated black hole, if observed by this tabletop experiment, may serve as an entrance to the world of quantum gravity,” says physicist Koji Hashimoto, from Osaka University in Japan.

日本大阪大学的物理学家桥本(Koji Hashimoto)说:“如果通过这个桌面实验观察到模拟黑洞的全息图像,可能会成为量子引力世界的入口。”

Key to the new idea of a black hole hologram is string theory: the idea that the elementary particles that make up the Universe, such as quarks and leptons, are made up of one-dimensional strings that vibrate at different frequencies.

黑洞全息图新概念的关键是弦理论:组成宇宙的基本粒子,如夸克和轻子,是由以不同频率振动的一维弦组成的。

One version of string theory is known as holographic duality, and it basically suggests that whatever happens inside that ‘string theory’ space can also be translated onto a simpler ‘space’ with fewer dimensions, such as an event horizon boundary.

弦理论的一个版本被称为全息二象性,它基本上表明,无论在那个“弦理论”空间内发生什么,也可以被转换成一个更简单、维度更少的“空间”,比如视界边界。

This ties into one idea that black holes are nothing but holograms in the first place: two-dimensional surfaces that get projected into three dimensions (just like a normal hologram is).

这与黑洞一开始就是全息图的观点相联系:二维的表面被投射成三维(就像普通的全息图一样)。

If this was the case, it would solve some (but not all) of the tension between general relativity and quantum mechanics, because it would mean that everything that falls into a black hole doesn’t actually go in anywhere but remains packed on its circular surface. No need to go into the messy ‘beyond the event horizon’ details.

如果是这样的话,它将解决广义相对论和量子力学之间的部分(但不是全部)张力,因为这意味着落入黑洞的所有物体实际上并没有进入任何地方,而是仍然被包裹在其圆形表面上。没有必要进入混乱的“事件视界之外”的细节。

And that’s where holograms come into it. According to the researchers: a two-dimensional sphere could model a three-dimensional black hole, with light emitted at one point and measured at another in order to ‘see’ what’s happening.

这就是全息图的作用。据研究人员称:一个二维球体可以模拟一个三维黑洞,光在一个点发射,在另一个点测量,以便“看到”正在发生什么。

What you would be left with, assuming the right materials and lab conditions are used, is an Einstein ring – the deformation of light that can happen around a black hole due to its strong gravitational pull, as predicted by the theory of general relativity. This is known as gravitational lensing.

假设使用了合适的材料和实验室条件,你将得到的是一个爱因斯坦环——根据广义相对论的预测,黑洞周围可能发生的光变形是由于它的强大引力。这就是所谓的引力透镜效应。

This deformed ring of light is actually what we saw when the first ever picture of a black hole was published. As you can see, the images resulting from the calculations of this new research, shown up at the top of the page, look somewhat similar.

这个变形的光圈实际上是我们在第一张黑洞照片发表时看到的。如您所见,这项新研究的计算结果显示在页面顶部的图像看起来有些相似。

物理学家勾勒出一个雄心勃勃的计划,用全息图来模拟黑洞

(EHT Collaboration)

Unfortunately, as this is still a theoretical framework requiring a super-specific lab setup, you’re not going to be able to project a black hole on your kitchen table just yet. The researchers are now hoping to find quantum material that will allow them to test their theory.

不幸的是,由于这仍然是一个理论框架,需要一个超特定的实验室设置,所以您还不能在厨房桌子上投射出一个黑洞。研究人员现在希望能找到量子材料来测试他们的理论。

However, if we could perform the experiment, it just might help scientists match up our large-scale and small-scale understandings of the way the Universe works.

然而,如果我们能进行这个实验,它可能会帮助科学家们匹配我们对宇宙运行方式的大尺度和小尺度的理解。

“Our hope is that this project shows the way forward towards a better understanding of how our Universe truly operates on a fundamental level,” says physicist Keiju Murata, from Nihon University in Japan.

日本日本大学的物理学家Keiju Murata说:“我们的希望是,这个项目为更好地理解我们的宇宙在基本层面上是如何真正运行的,指明了前进的道路。”

The research has been published in Physical Review Letters.

这项研究发表在《物理评论快报》上。

上一篇

神奇宇宙(109)只是众多球状星团中一个 半人马座Ω含数百万恒星

你也可能喜欢

发表评论

您的电子邮件地址不会被公开。 必填项已用 * 标注

提示:点击验证后方可评论!

插入图片